Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20764, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007490

RESUMO

The discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747. These clusters were identified as unidentified non-ribosomal peptide synthetase (NRPS) and unidentified type I polyketide synthase (T1PKS) clusters. These BGCs exhibited unique genetic architecture and encoded several putative enzymes and regulatory elements, suggesting its involvement in the synthesis of bioactive secondary metabolites. Furthermore, comparative genome analysis revealed that these BGCs were distinct from previously characterized gene clusters, indicating the potential for the production of novel compounds. Our findings highlighted the importance of genome mining as a powerful approach for the discovery of biosynthetic gene clusters and the identification of novel bioactive compounds. Further investigations involving expression studies and functional characterization of the identified BGCs will provide valuable insights into the biosynthesis and potential applications of these bioactive compounds.


Assuntos
Bactérias , Genoma Bacteriano , Bactérias/genética , Biologia Computacional , Família Multigênica , Vias Biossintéticas/genética
2.
Acta Trop ; 240: 106842, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702446

RESUMO

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis have been considered to be effective biological control agents for several insects. In this study, we isolated and identified EPNs from soil samples in agricultural areas of northern Thailand and evaluated their efficacy for controlling larvae of three mosquito vector species, Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. A total of 51 of 1,000 soil samples were positive (5.1% prevalence) for EPNs, which were identified through sequencing of the rDNA and ITS to 37 Steinernema isolates (3.7%) and 14 Heterorhabditis isolates (1.4%). For the bioassay, the larvae of mosquitoes were exposed to Steinernema surkhetense (eALN6.3_TH), Steinernema lamjungense (eALN11.5_TH), Heterorhabditis indica (eACM14.2_TH) and Heterorhabditis bacteriophora (eALN18.2_TH). Heterorhabditis bacteriophora showed the highest efficacy against Ae. aegypti and Cx. quinquefasciatus. At 96 h after exposure, the mortality rates were 60.0 and 91.7%, respectively. The EPNs were observed in the dead mosquito larvae, which were mostly found in the thorax followed by the head and abdomen. Some EPNs were dead with melanization, and some were able to survive in the cavity of mosquito larvae. Our results show the low prevalence of EPN in agricultural areas of Thailand. Moreover, H. bacteriophora may be considered an alternative biocontrol agent for managing and controlling these vector mosquitoes.


Assuntos
Aedes , Culex , Mariposas , Nematoides , Animais , Larva , Tailândia , Solo
3.
Biology (Basel) ; 11(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36421372

RESUMO

Entomopathogenic nematodes (EPNs) are insect parasitic nematodes of the genera Het-erorhabditis and Steinernema. These nematodes are symbiotically associated with the bacteria, Photorhabdus and Xenorhabdus, respectively. National parks in Thailand are a potentially rich resource for recovering native EPNs and their symbiotic bacteria. The objectives of this study are to isolate and identify EPNs and their bacterial flora from soil samples in four national parks in Thailand and to evaluate their efficacy for controlling mosquito larvae. Using a baiting method with a Galleria mellonella moth larvae and a White trap technique, 80 out of 840 soil samples (9.5%) from 168 field sites were positive for EPNs. Sequencing of an internal transcribed spacer resulted in the molecular identification of Heterorhabditis nematode isolates as H. indica, H. baujardi and Heterorhabditis SGmg3, while using 28S rDNA sequencing, Steinernema nematode species were identified as S. guang-dongense, S. surkhetense, S. minutum, S. longicaudum and one closely related to S. yirgalemense. For the symbiotic bacterial isolates, based on recA sequencing, the Photorhabdus spp. were identified as P. luminescens subsp. akhurstii, P. luminescens subsp. hainanensis and P. luminescens subsp. australis. Xenorhabdus isolates were identified as X. stockiae, X. indica, X. griffiniae, X. japonica and X. hominickii. Results of bioassays demonstrate that Photorhabdus isolates were effective on both Aedes aegypti and Culex quinquefasciatus. Therefore, we conclude that soil from Thailand's national parks contain a high diversity of entomopathogenic nematodes and their symbiotic bacteria. Photorhabdus bacteria are larvicidal against culicine mosquitoes and may serve as effective biocontrol agents.

4.
PLoS One ; 17(9): e0274956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129957

RESUMO

Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Photorhabdus , Xenorhabdus , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Família Multigênica , Oxacilina/farmacologia , Photorhabdus/metabolismo , Extratos Vegetais/farmacologia , Policetídeo Sintases/genética , Sideróforos/metabolismo , Staphylococcus aureus/genética , Xenorhabdus/genética
5.
Acta Trop ; 228: 106318, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35063414

RESUMO

Aedes aegypti is the mosquito vector of several arboviruses, especially the dengue virus. Aedes aegypti strain resistant to chemical insecticides have been reported worldwide. To tackle this, an entomopathogenic nematode (EPN) may be an alternative bio-control agent. To this end, this study aims to isolate, identify, and analyze the phylogeny of EPNs in Thailand and evaluate their efficacy for controlling the Ae. aegypti larvae. From 12 provinces in Thailand, soil samples were randomly collected, with 118 out of 1,100 them being positive for EPNs (10.73% prevalence) in genera Steinernema (4.46%) and Heterorhabditis (6.27%). Then, molecular discrimination of these two genus was performed based on the sequencing and phylogenetic analysis of the 28S rDNA and internal transcribed spacer regions. The most abundant species of EPN were Heterorhabditis indica, with minor species of Heterorhabditis sp. SGmg3, H. baujardi, S. surkhetense, S. kushidai, S. siamkayai, Steinernema sp. YNd80, Steinernema sp. YNc215, S. guangdongense, and S. huense. The larvicidal activity of five selected EPN isolates were tested against Ae. aegypti. Ten larvae of Ae. aegypti were incubated with different concentration (80, 160, 320, and 640 IJs/larva) of the infective juveniles of EPN in a 24-well and 6-well plates for 4 days. The mortality rates of the larvae were observed daily. Steinernema surkhetense (ePYO8.5_TH) showed the potential to kill mosquito larvae, with the highest mortality rate of 92 ± 9.37% and 89 ± 9.91% after it was treated with 640 IJs/larva in a 24-well plate and 1600 IJs/larva in a 6-well plate, respectively. There is an abundant distribution of EPNs across the country, and S. surkhetense ePYO8.5_TH may be used as a biocontrol agent against Ae. aegypti larvae.


Assuntos
Aedes , Vírus da Dengue , Rabditídios , Animais , Vírus da Dengue/genética , Larva , Filogenia
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-700093

RESUMO

Objective:To evaluate the efficacy of symbiotic bacteria,Xenorhabdus indica,Xenorhabdus stockiae,Photorhabdus luminescens subsp,akhurstii and Photorhabdus luminescens subsp.hainanensis as a larvicide against Aedes aegypti and Aedes albopictus.Methods:Larvae (L3-L4) of Aedes aegyptiand Aedes albopictus were given 2 mL of a suspension 107-108 CFU/mL of each symbiotic bacterium.Distilled water and Escherichia coli ATCC· 25922 were used as the control.The morality rate of the larval mosquitoes was observed at 24,48,72 and 96 h.The experiment was performed in triplicates.Results:The larvae of both Aedes species started to die at 24 h exposure.Aedes aegypti showed the highest mortality rate (87%-99%),96 h after exposure to Xenorhabdus stockiae (bNBP22.2_TH).The mortality rate of Aedes albopictus was between 82% and 96% at 96 h after exposure to Xenorhabdus indica (bKK26.2_TH).Low effectiveness of distilled water and Escherichia coliATCC· 25922 were observed in both Aedes larvae,with a mortality rate of 2% to 12%.Conclusions:The study confirms the oral toxicity of Xenorhabdus and Photorhabdus bacteria against Aedes spp.Xenorhabdus stockiae and Xenorhabdusindica may be an alternative agent for control Aedes spp.This is basic information for further study on the mechanism of action on Aedes larvae or application to control mosquito larvae in the community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...